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Scaled particle theory for a binary mixture of hard discorectangles and for a binary mixture of hard rect-
angles is used to predict possible liquid-crystal demixing scenarios in two dimensions. Through a bifurcation
analysis from the isotropic phase, it is shown that isotropic-nematic demixing is possible in two-dimensional
liquid-crystal mixtures composed of hard convex bodies. This bifurcation analysis is tested against exact
calculations of the phase diagrams in the framework of the restricted-orientation two-dimensional model
�Zwanzig model�. Phase diagrams of a binary mixture of hard discorectangles are calculated through the
parametrization of the orientational distribution functions. The results show not only isotropic-nematic, but also
nematic-nematic demixing ending in a critical point, as well as an isotropic-nematic-nematic triple point for a
mixture of hard disks and hard discorectangles.
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I. INTRODUCTION

The demixing behavior of hard-core three-dimensional
additive mixtures composed of particles without orienta-
tional degrees of freedom, in particular the hard-sphere and
parallel hard-cube systems, has been recently studied in
depth by several authors using Monte Carlo simulation tech-
niques �1–3� and theory �4,5�. The main conclusions that can
be drawn from these studies is that fluid-fluid demixing is
always metastable with respect to fluid-solid demixing for
asymmetric mixtures in which the solid phase is composed
of big particles and the fluid phase is enriched in small par-
ticles �demixing behavior similar to the one found in mix-
tures of parallel hard cubes on a cubic lattice �6��. The phys-
ics behind this demixing behavior is known as the depletion
effect �7�, and can be explained as the effective attraction
between two large particles due to the uncompensated os-
motic pressure exerted by the small particles when the two
excluded volumes between big and small particles overlap.
Thus in the demixed phases enriched by each of the species
the accessible volumes to the particles is maximized and as a
consequence the total configurational entropy is increased.

Three-dimensional mixtures of additive anisotropic par-
ticles possess a demixing behavior which differs from that of
mixtures composed of isotropic particles because of the pres-
ence of particle orientational degrees of freedom. It has been
shown that demixing strongly depends on the shape of the

particles �spherical, oblate or prolate� �8–14� and for a par-
ticular geometry, on its aspect ratio �the ratio between the
characteristic lengths of particles� �15–17�. For example, one
of the demixed phases can be an oriented phase, i.e., a nem-
atic �N� phase where the particles are aligned on average
along the nematic director. It is easy to predict the most
common demixing scenario, it will proceed between a N
phase composed of the longer particles and an isotropic �I�
phase composed of the short-particle component. In this case
the excluded volume between the large particles is mini-
mized by their parallel alignment. I-I and N-N demixing was
also found in mixtures of anisotropic particles �8–17�, show-
ing that fluid-fluid demixing is a common scenario in these
mixtures, which has recently been confirmed experimentally
�18�.

The scaled particle theory �SPT� was initially developed
for hard spheres �19� and later extended to anisotropic par-
ticles �20–22�. The usual formulation of SPT for mixtures of
hard convex bodies restricted to the isotropic orientational
phase has as a main ingredient the expression for the second
virial coefficients as a function of the volumes, surface areas,
and mean curvatures of hard convex bodies �23,24�. This
exact result obtained in the 1950’s �23� was used to show
that in two dimensions I-I demixing is not allowed �25�, the
gain in accessible volume after demixing is much lower in
two dimensions, which explains the stability of mixtures
with respect to I-I demixing at any composition. This result
has been confirmed by other theories constructed from the
expression of the direct correlation function in terms of the
geometric measures of the particles �10�, in the same spirit as
the fundamental measure theory �FMT� for hard spheres
�26,27�. Some authors have studied the possibility of demix-
ing in a mixture of perfectly oriented two-dimensional addi-
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tive particles �10�, arriving at the same conclusion, the mix-
ture is always stable. However, in contrast to these findings,
we will show in Sec. III that the SPT approximation does
predict N-N demixing in the limit of parallel alignment. Also,
the previous negative results cannot be taken as definite,
since the suppression of orientational fluctuations is a crude
approximation to study the possibility of N-N demixing, so
that the question about the existence of demixing �I-N or
N-N� in two dimensions is still open. Note that we explicitly
distinguish I-N demixing from the usual orientational I-N
phase transition. The reason for this will be explained later in
Sec. IV C.

As opposed to additive mixtures, nonadditive mixtures of
hard disks can demix, as was shown by several authors
�28,29�. This result is not surprising since the demixed
phases, composed of practically the same kind of species, are
approximately additive and, as a consequence, have less ex-
cluded volumes between any pair of particles compared to
the mixed state. Nonadditive mixtures made up of aniso-
tropic particles have not been analyzed so far. The coupling
between nonadditiveness in the interactions and orientational
degrees of freedom is expected to give rise to interesting
phenomenology, which is worth investigating. We will not
pursue these aspects in the present paper.

The purpose of this work is to shed light on the question
about the existence of I-N or N-N demixing in two-
dimensional mixtures of additive hard anisotropic particles.
We have used the SPT formalism specified for a mixture of
hard rectangles �HR� and hard discorectangles �HDR�, and
applied a bifurcation analysis from the isotropic phase to find
the possibility of I-N demixing. This analysis has been
shown to be useful in the study of phase transitions with
symmetry breaking. In particular it was used to study the
I-N transition in two dimensions in a one-component system
of hard needles �30�, and in a system composed of self-
assembled rods �31� in the same two-dimensional Onsager
limit. Using the bifurcation analysis, we have found that,
even for a system of HDR �where the I-N transition is con-
tinuous in the one-component limit, as indicated by simula-
tion �32� and density-functional theory �33�� the mixture can
demix in two phases of different composition. In addition,
we have calculated the phase diagrams of different mixtures
of HDR and confirmed this demixing scenario. In some mix-
tures we have also found a N-N phase separation which ends
in a critical point, as well as a triple coexistence between an
I phase and two different nematics.

The paper is organized as follows. In Sec. II we present
the theoretical model, and in Sec. III the bifurcation analysis.
The results from this analysis are shown for HDR in Sec.
IV A, for HR in Sec. IV B, and a check using a very simple
model �Zwanzig approximation� is presented in Sec. IV C.
Section V shows the results from the calculations of the
phase diagrams of HDR mixtures. Finally some conclusions
are drawn in Sec. VI.

II. MODEL

The key quantity in the development of the SPT for a
mixture of hard convex bodies in two dimensions �see Ref.

�34�� is the averaged �over all possible orientations of a fluid
particle of species �� excluded area between an inserted
scaled particle s with orientation �1 �measured from the
nematic director� and a fluid particle of species � with orien-
tation �2, i.e.,

�Vexcl,�
� ��Ls,�s,�1� =� d�2h���2�Vexcl,�

� �Ls,�s,�12� , �1�

where Ls and �s are the length and width of the scaled par-
ticle, h���2� is the orientational distribution function of spe-
cies � and �12=�1−�2 the relative angle between the axes of
particles s and �. The superindex � labels the nature of the
particle, either hard rectangles ��=HR� or hard discorect-
angles ��=HDR�. The excluded area between two rectangles
�s and �� is

Vexcl,�
HR �Ls,�s,�12� = �L�Ls + ���s��sin �12� + v� + vs

+ �L��s + Ls����cos �12� . �2�

For hard discorectangles

Vexcl,�
HDR �Ls,�s,�12� = L�Ls�sin �12� + v� + vs + L��s + Ls��

+
�

2
���s, �3�

where for HR v�=L��� is the area of species � ��= 	� ,s
�
while for HDR v�=L���+���

2 /4. The reversible work re-
quired to insert the scaled particle with fixed orientation co-
incides with the excess chemical potential and, in the limit of
small sizes �Ls�L�, �s��� for any ��, it has the following
asymptotic form �19�:

�	exc��1� � 	�0��Ls,�s,�1�

� − ln1 − �
�


��Vexcl,�
� ��Ls,�s,�1�� , �4�

where 
� is the density of species � and the sum runs over all
species. In the opposite limit of large sizes �Ls�L� , �s

���� this work coincides with the thermodynamic work re-
quired to open a cavity of area vs, which is equal to Pvs,
where P is the fluid pressure. The SPT interpolates between
both limits using a Taylor expansion of the function
	�0��Ls ,�s ,�1� around the value �Ls ,�s�= �0,0�. The second
term of this expansion is fixed to Pvs. Finally, all the particle
lengths are taken to be those of any one of the species, say �,
which results in

�	exc,���1� = − ln�1 − �� +
�


� d�2h��2�V�
�0���12�

1 − �

+ �Pv�, �5�

where �=�
�v� is the total packing fraction and V�
�0���12�

=Vexcl,�
� �L ,� ,�12�−v�−v. The excess chemical potential

of species � is the angular average

MARTÍNEZ-RATÓN, VELASCO, AND MEDEROS PHYSICAL REVIEW E 72, 031703 �2005�

031703-2



�	exc,� =� d�1h���1���	exc,���1��

= − ln�1 − �� +
�


��V�
�0���

1 − �
+ �Pv�, �6�

where ��¯�� means the following double angular average:

��V�
�0��� =� d�1h��1� � d�2h���2�V�

�0���12� . �7�

Integrating the thermodynamic relations

��P

�
�

= 1 + �





��	exc,

�
�

with the use of Eq. �6� allows us to find

�P =



1 − �
+

1

2

��

�
��V�

�0���

�1 − ��2 , �8�

where 
=��
� is the total density. Finally, through the defi-
nition of the pressure �P=
+��
���	exc,��−�exc, where
�exc=�Fexc/V is the excess part of the free energy density in
reduced units, the result �8�, and Eq. �6� we obtain

�exc = − 
 ln�1 − �� +
1

2

��

�
��V�

�0���

1 − �
. �9�

The ideal part of the free energy density of the mixture is

�id = �
�


�ln 
� − 1 + �
0

�

d�h����ln��h������ , �10�

where all distribution functions are normalized as
�0

�d�h����=1 �note that, in view of the head-tail symmetry
of the particles, the angle � can be restricted to the interval
�0,���. The functional minimization of �=�id+�exc with
respect to the 	h�
 allows, as usual, to find the equilibrium
distribution functions and correspondingly the equilibrium
free energy of the mixture.

The above theoretical scheme will be used in the follow-
ing section to develop a bifurcation analysis of I-N demixing
for HDR and HR. Also it will be used to calculate the phase
diagram of mixtures. In order to do that we need to fix the
fluid pressure, which means that the composition of one of
the species and the total fluid density are no longer indepen-
dent variables. Once the independent variable is chosen, the
dependent variable can be calculated through the constant
pressure criterion. Thus, the adequate thermodynamic poten-
tial to work with is the Gibbs free energy per particle in
reduced units �g= ��+�P� /
. The minimization of � with
respect to the order parameters �in the case of the nematic
phase�, the condition of constant pressure and the double
tangent construction on �g with respect to the composition
of one of the species, allows us to calculate the coexistence
condition between different phases. Changing the pressure
and repeating the above steps we have found the phase dia-
grams of different binary mixtures.

III. BIFURCATION ANALYSIS

The usual bifurcation analysis for a one-component fluid
with symmetry breaking includes �i� an order parameter ex-
pansion of the free energy around the bifurcation point; �ii�
the calculation of the inverse isothermal compressibility of
the ordered phase at the same point. The order of the phase
transition can be elucidated by the combined use of both
criteria, the sign of the free-energy difference between the
ordered and disordered phases, already minimized with re-
spect to the order parameter, and the sign of the isothermal
compressibility of the ordered phase, evaluated at bifurca-
tion. If the system exhibits a tricritical point, its location can
be obtained from the vanishing of either the first coefficient
in the expansion of the free-energy difference or the isother-
mal compressibility, depending on which of them occurs first
�35�.

For binary mixtures fluid-fluid demixing without symme-
try breaking is usually calculated from the vanishing of the
determinant of the matrix with elements �2� /�
i�
 j which
means that the stability of the mixture with respect to volume
and composition fluctuations is violated. This allows us to
obtain the demixing spinodal. However, in a symmetry-
breaking transition the above matrix should be calculated
from the minimized free energy of the ordered phase using
the order-parameter expansion up to the order required. This
criterion is equivalent to the loss of convexity of the Gibbs
free energy per particle of the ordered phase with respect to
the mixture composition at the bifurcation point. Since our
aim is the study of I-N demixing, which involves an orien-
tational symmetry breaking, we will implement the latter
scheme.

A Fourier-series decomposition of the orientational distri-
bution functions

h���� =
1

�1 + �
k�1

hk
��� cos�2k��� �11�

should retain only even harmonics, due to the symmetry
of the particles studied here �h����=h���−���. In the
neighborhood of the I-N bifurcation point we can assume
that the Fourier amplitudes 	hk

���
 are small, and a Taylor
expansion of the difference in free energy per particle ��
=�N−�I ��=� /
� between N and I phases is therefore valid
�the order being defined by a small bifurcation parameter �,
hk

�����k�. Up to fourth order, the ideal contribution to ��
reads

��id � �
	

x	1

4
��h1

�	��2 + �h2
�	��2� −

1

8
�h1

�	��2h2
�	�

+
1

32
�h1

�	��4� , �12�

whereas the excess contribution is

��ex =
1

2
y�

	�

x	x�

���V	�
�0���

�v�
. �13�

We have defined
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���V	�
�0��� � ��V	�

�0���N − ��V	�
�0���I, �14�

with

���V	�
�0���

�v�
= −

1

�
�
k�1

T	�
�k�

4k2 − 1
hk

�	�hk
���, �15�

where it is understood that the sum is to be truncated at
fourth order in the expansion parameter. In the above expres-
sions we have also defined

T	�
�k� = �

L	L�

�v�
for HDR,

�L	 + �− 1�k�	��L� + �− 1�k���
�v�

for HR�
�16�

with x	=
	 /
 being the molar fraction of species 	,
y=� / �1−��, and �v�=��x�v� the average particle area of the
mixture. The complete free-energy expansion up to fourth
order reads

�� = a11
�1��h1

�1��2 + a22
�1��h1

�2��2 + 2a12
�1�h1

�1�h1
�2� + a11

�2��h2
�1��2

+ a22
�2��h2

�2��2 + 2a12
�2�h2

�1�h2
�2� + a11

�3��h1
�1��2h2

�1�

+ a22
�3��h1

�2��2h2
�2� + a11

�4��h1
�1��4 + a22

�4��h1
�2��4. �17�

The expressions for the a	�
�k�’s are

a	�
�k� =

x	

4
�	� −

2yx�

�4k2 − 1��
T	�

�k��, k = 1,2, �18�

a		
�3� = −

x	

8
, a		

�4� =
x	

32
, 	,� = 1,2, �19�

where �	� is the Kronecker delta.
Minimizing �� with respect to all the amplitudes except

one �say h1
�1��, substituting the results for the other ampli-

tudes in �17�, and neglecting all terms with order higher than
four, we obtain an effective free energy difference as

�� = A�h1
�1��2 + B�h1

�1��4, �20�

with the following explicit expressions for the coefficients A
and B:

A = a11
�1� −

�a12
�1��2

a22
�1� , �21�

B = a11
�4� + a22

�4� −
�a22

�3��2

4a22
�2� �a12

�1�

a22
�1��4

−
�a11

�3� − a22
�3�a12

�2�

a22
�2�a12

�1�

a22
�1��2�2

4a11
�2� −

�a12
�2��2

a22
�2� � . �22�

Note that A and B depend on x=x2 and y. To proceed we
must bear in mind that demixing phase transitions usually
imply fractionation �different composition x of the coexisting

phases� as well as a change in packing fraction �. Therefore,
we should expand both the composition x and the variable y
around the bifurcation point �x* ,y*�,

x � x* + x�2��h1
�1��2, y � y* + y�2��h1

�1��2. �23�

Inserting the expansions �23� in the first derivative of �20�
with respect to h1

�1� and equating the result to zero, order by
order, we obtain the following conditions:

A* = 0, O�h1
�1�� , �24�

Ax
*x�2� + Ay

*y�2� = − 2B*, O��h1
�1��3� , �25�

where f*� f�x* ,y*� with �f =A ,B ,Ax ,Ay�, and the subindices
x ,y in Eq. �25� mean the partial derivatives of A with respect
to x and y, respectively. Solving Eq. �24� gives the packing
fraction as a function of composition at the bifurcation point,
whereas Eq. �25� allows to find a relation between x�2� and
y�2�, respectively.

Expanding �20� up to fourth order around the bifurcation
point and using �24� and �25� we obtain the energy difference
as

�� = − B*�h1
�1��4. �26�

Depending on the sign of B* the nematic branch bifurcates
below �positive sign� or above �negative sign� the isotropic
branch. The latter case corresponds to a first-order transition.
Using �23� and �25�, Eq. �26� can be rewritten as

�N = �I −
1

4B* �Ax
*�x − x*� + Ay

*�y − y*��2. �27�

The stability of the mixture with respect to volume and com-
position fluctuations is guaranteed when

 �2�

�
1
2 � �2�

�
2
2 � −  �2�

�
1�
2
�2

� 0. �28�

Fixing the areas of all species to one �in this case the demix-
ing criterion will depend on the difference in particle shapes
and not on their areas� the Eq. �28�, in terms of the variables
�x ,y�, can be written as

H �
�1 + y�4

y2 � �

�y
y2��

�y
� �2�

�x2 − y
�2�

�x�y
�2� � 0, �29�

which, for the N phase and at the bifurcation point �with use
of �27��, becomes

HN
* = HI

* −
�1 + y*�4

2�y*�2B*�� �

�y
y2��I

�y
��*

�Ax
*�2

− 2 �2�I

�x�y
�*

�y*�2Ax
*Ay

* +  �2�I

�x2 �*

�y*Ay
*�2� � 0.

�30�

It is easy to show that HI�x ,���0 for HDR, freely rotating
HR and HR in the Zwanzig approximation. This result con-
firms the general wisdom �25� mentioned above on the sta-
bility of a two-dimensional mixture of hard bodies against I-I
fluid demixing, in the framework of the SPT. However, fix-
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ing the particle orientations to be parallel we obtain the con-
dition for Eq. �28� to be violated as

� � �* � �1 + x�1 − x�� − −1�2�−1/2 �31�

with

 =���2 − 1 +
�

4

�1 − 1 +
�

4

for HDR,

��2

�1
for HR,

� �32�

and, correspondingly, the position of the critical point in the
pressure-composition plane is

xc =
1

2
, �Pcv1 =

3� + −1� − 2

� + −1 − 2�2 , �33�

where ��= �L�+��� /�� for HDR while ��=L� /�� for HR
�remember that these results apply to mixtures such that all
particle areas have been taken to be unity�. This result con-
firms that there exists N-N demixing in the approximation
that particles are perfectly aligned.

The condition HN
* =0 will be used in the next section to

calculate the I-N demixing region in the plane �-x1
*, where

�=�2 /�1 and �� is the aspect ratio of species �, and it is
equivalent to the condition that the Gibbs free energy per
particle of the N phase have zero curvature �second deriva-
tive with respect to x1� at bifurcation, thereby determining
the I-N demixing tricritical point.

IV. RESULTS FROM THE BIFURCATION ANALYSIS

This section shows the results from the bifurcation analy-
sis, whose formalism was introduced in the preceding sec-
tion. We have divided this section into three sections. The
first two are devoted to the study of the freely rotating HDR
and HR models, respectively, while in the third section we
discuss the implementation of the formalism to the
restricted-orientation model �Zwanzig model�. In this last
section results from the calculation of the exact phase dia-
grams of this model are shown. The main purpose is to check
the results from the bifurcation analysis against exact calcu-
lations �note that there is no need to use any parametrization
in the Zwanzig model�.

A. Hard discorectangles

The solution of Eq. �24� for HDR allows us to write the
packing fraction value at the bifurcation point as a function
of the composition of the mixture,

�* = 1 +
2

3�

�L2�
�v� �

−1

, �34�

where we have defined �un�=��x�
*u�

n for a generic quantity u.
The expression for B* which, as pointed out before, defines

the relative positions of the I and N branches near the bifur-
cation point, is

B* =
x1

*

44z1
�z2�3 + z1�r2 − 2z1z2r + z1�3 + z2�� , �35�

where r=L2 /L1 and z�=x�
*L�

2 / �L2��1. The quadratic polyno-
mial P�r� enclosed by the square brackets has a discriminant
D=−48z1z2, which obviously is always negative, while
P�0��0. Thus the coefficient B* is always positive and, as a
consequence, the nematic branch always bifurcates from be-
low with respect to the isotropic one.

We take the areas of all particles to be equal to 1, which
means that the particle length and width, in units of v	

1/2, are

�	 = �	 − 1 +
�

4
�−1/2

, L	 = ��	 − 1��	. �36�

Inserting �34� and �35� in �30�, the final expression for HN
*

can be written in a particularly compact form,

HN
* =

�1 + y*�4

x1
*x2

*�y*�2�4 +
3�

�L2�
−

8

3
s3

21 + s2
2 +

3

4

�p�2

�L2�
�s2 − s1�2�� ,

�37�

s1 =��p2�
�p�2 − 1, s2 =� �L4�

�L2�2 − 1, �38�

s3 =� 3�L2�3

4�L4��L2� − �L3�2 , �39�

where p=2L+�� is the perimeter of the particle.
The equality to zero of the expression enclosed by square

brackets in �37�, for the specific case L2=0 �or �2=1, i.e., a
binary mixture of hard disks and HDR�, gives us the analytic
solution x1

*=15� /4�6�+L1
2�, shown in Fig. 1 as the curve

which encloses all the other curves in the �-x1
* plane

��=�2 /�1�. Note that the above expression is not valid when

FIG. 1. Solutions of HN
* =0 in the x1

* �composition�-� plane,
where �=�2 /�1, in logarithmic scale, for HDR mixtures with par-
ticle areas equal to unity. The curves are shown for different values
of �2. The shaded areas represent the demixing regions predicted
from HN

* �0. From outside to inside the values of �2 are 1, 2, 3, 5,
and � �the Onsager limit�.
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�=1 or x1
*=0 �the one-component hard disk fluid�. In Fig. 1

the solutions of HN
* =0 for other mixtures, including the On-

sager limit �i.e., a mixture of hard needles�, are shown. It is
remarkable that, even in this limit, the mixture can demix. To
calculate these curves the aspect ratio �2 was fixed, while �1
was varied from 1 to 104, and HN

* =0 was solved for x1
*. The

curve corresponding to the Onsager limit �	→� �	=1,2�
was calculated by first taking the corresponding limit of the
expression enclosed by square brackets in Eq. �37� �which
depends only on �� and solving again for x1

*.
We now proceed to explain the physics behind the behav-

ior shown in Fig. 1 using the particular values �=2/5,
�2=2 as an example. A vertical line located at this value of �
intersects the curve corresponding to �2=2 at two points,
giving two values of x1

* at which HN
* =0. In Fig. 2 we plot the

reduced pressure as a function of x1 for these values of � and
�2. As can be seen from this figure the pressure is a mono-
tonically decreasing function of x1, which means that the
above-mentioned intersection with a higher value of x1

* has a
lower pressure than the other one. This, in turn, implies that
the first point corresponds to a genuine tricritical point
where, for the first time, the Gibbs free energy loses its con-
vexity with respect to the composition variable. The second
point also corresponds to a loss of convexity of the Gibbs
free energy but, as will be discussed later, lies inside the
two-phase region of a demixing transition.

B. Hard rectangles

As shown in Refs. �33,34� the system of HR exhibits a
transition to a phase with fourfold symmetry, the so-called
tetratic phase �Nt�. In this phase the orientational distribution
function has a symmetry under rotation by � /2,
h���=h�� /2−��. The I-Nt transition was always found
to be of second order in the whole region of its stability �1
���2.21�. Thus the question naturally arises as to the rela-
tive stability of this phase in the binary mixture. The above
symmetry dictates that the odd Fourier amplitudes 	h2j−1

��� 


should be equal to zero. Using this constraint and carrying
out the same expansion for the free-energy difference around
the bifurcation point, we arrive at the same Eq. �17�, with the
coefficients a	�

�k� �k=1,2� obtained from Eq. �18�, but through
the substitution k→2k on the right-hand side of �18�, while
for k=3,4 the coefficients are given by the same expression
�19�. The packing fraction at the I-Nt bifurcation point, ob-
tained as the solution of �24�, is

�Nt

* = 1 +
2

15�

��L + ��2�
�v� �−1

, �40�

while the value corresponding to the isotropic-uniaxial nem-
atic �Nu� bifurcation point, calculated directly from �18�,
�19�, and �24�, is

�Nu

* = 1 +
2

3�

��L − ��2�
�v� �−1

. �41�

The equality of �40� and �41� defines a line in the plane
x1

*-�1 �fixing �2� where the I-Nt transition preempts the
I-Nu transition. Taking the areas of both particles to be unity,
as was done for HDR, and changing to variables
��=ln���� /2 ��=1,2�, we obtain the solution of �Nt

=�Nu
as

x1
* =

1 − 4 sinh2 �2

4�sinh2 �1 − sinh2 �2�
, �42�

with the constraint sinh2 �	�1/4�sinh2 �� �and 	���.
This result should be taken with some care because the

I-N� ��=u , t� transitions can be of first order and the relative
position of binodals can change the scenario predicted above.
In order to elucidate the nature of these transitions, we have
first calculated the coefficient BNt

* for the tetratic phase which
results in

BNt

* =
x1

*

45z1
�z2�11 + 5z1�r2 − 10z1z2r + z1�11 + 5z2�� ,

�43�

where r=cosh �2 /cosh �1 and z	=x	
* cosh2 �	 / �cosh2 ��.

Again the second-order polynomial with respect to r en-
closed by the square brackets is always greater than zero.
Thus B*�0 and the Nt energy branch bifurcates from below
from the I branch. In a second step we have calculated HNt

*

which gives

HNt

* = 16
�1 + y*�4

x1
*x2

*�y*�2�1 −
2

11
s3

21 + s2
2 + 15

�s2 − s1�2

1 + s1
2 �� ,

�44�

sk =��cosh2k ��
�coshk ��2 − 1, k = 1,2, �45�

s3 =� 11�cosh2 ��3

16�cosh4 ���cosh2 �� − 5�cosh3 ��2 . �46�

The region in the x1
*-�1 plane where HNt

* �0 defines the de-
mixing region, bounded by a dashed line in the inset of Fig.

FIG. 2. Reduced pressure �Pv1 versus composition x1 for a
binary mixture of HDR with �1=5 and �2=2. Filled circles indicate
the intersections of a vertical line located at the corresponding value
of �=2/5 and the solution of HN

* =0 in Fig. 1. The continuous line
is the portion corresponding to the shaded region in the latter figure.
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3�a� for �2=1. As can be seen this region is closed as in the
case of HDR for the I-N transition. The main reason for this
behavior is that in the one-component limit the I-Nt transi-
tion is of second order �BNt

* �0 and ���T�Nt

−1�*�0 �36� for all
�1� which in turn means that the solutions of HNt

�x1
* ,�1�=0

do not intersect the lines x1
*= 	0,1
.

As the third and last step we have calculated the expres-
sions for BNu

* and HNu

* , which are too large to be shown here,

except for their one-component limits x1
*→1,

lim
x1

*→1

BNu

* =
1

64

5 − 2 coth2 �1

5 − coth2 �1
, �47�

���T�Nu

−1v1�* = y*�1 + y*�
15 coth2 �1 − 6 coth4 �1 − 5

5 − 2 coth2 �1
,

�48�

where, rather than H, the inverse isothermal compressibility
�T

−1 was chosen as the adequate thermodynamic variable to
elucidate the nature of the I-Nu transition of a one-
component fluid �36�. An important difference to be men-
tioned is that, for HR, BNu

* in the one-component limit can be
negative for some �1 �see Eq. �47��, which indicates the pres-
ence of a tricritical point. In this limit the condition
���T�Nu

−1�*=0 is more stringent to determine the exact location
of this point which gives, equating the numerator of the
right-hand side of Eq. �48� to zero, the solution

�1
* =

�1 + �7/15 + 2/�5

�1 + �7/15 − 2/�5
� 5.44

�34�. On the other hand, under the assumption that both the
I-Nu and I-Nt are of second order, the transition to the Nt
phase preempts the I-Nu transition for �1 less than a value �1

*

obtained from Eq. �42� by taking the one-component limit
x1

*=1. The result is �1
*= �3+�5� /2�2.62. However, for this

value of �1
*, the I-Nu transition is of first order, so that the

value of �1
* that determines when the Nt phase begins to be

stable �for �1��1
*� should be found as the intersection of the

I-Nt spinodal with the I binodal of the I-Nu coexistence. This
value turns out to be �33� �1

*=2.21. Thus, in the one-
component limit, the range where the transition from the I
phase to an orientational ordered phase is of first order is
2.21��1�5.44. For the mixture, the more stringent condi-
tion turns out to be HNu

* �x1
* ,�1�=0 whose solutions are shown

for �2=1, 5, and 10 �see Fig. 3�. The main differences be-
tween these figures and that obtained for HDR can be sum-
marized as follows: �i� Some of the predicted demixing re-
gions shown in Fig. 3 are open due to the first order nature of
the I-Nu transition in the one-component limit, as was dis-
cussed above. In contrast the solution to HNt

* =0 generates a
closed loop due to the second order nature of the I-Nt tran-
sition �see the inset of Fig. 3�a��. Finally for �=10 �Fig. 3�c��
HNu

* =0 has two separate solutions, one of which is closed,
the other one bounding an open region. In the Onsager limit
we again obtain the closed loop shown in Fig. 1, as should be
expected, since both models have the same asymptotic limit.
�ii� Due to the presence of the Nt phase in the mixture of HR,
one of the curves which bounds the demixing regions is
given by Eq. �42� �the dotted lines in Fig. 3�. �iii� The de-
mixing regions for HR mixture are in general wider as com-
pared to those of HDR.

Let us discuss the behavior of the pressure, using Fig. 3�a�
and, as an example, the case �2=1 and �1=102. This behav-
ior is similar to that shown in Fig. 2 for the HDR model,
namely the pressure is a monotonically decreasing function

FIG. 3. Demixing regions predicted from HN�

* =0 ��=u , t� for
HR in the x1

*-�1 plane. The solutions of the equations HNu

* =0 �solid
line�, HNt

* =0 �dashed line�, and the function �42� �dotted lines� are
shown for �2=1 �a�, 5 �b�, and 10 �c�.

DEMIXING BEHAVIOR IN TWO-DIMENSIONAL… PHYSICAL REVIEW E 72, 031703 �2005�

031703-7



of composition. Also there are two points obtained from the
intersection of the vertical line at �1

−1=10−2 and the bound-
aries of the shaded region �the upper one on the solid line
and the other on the lower branch of the dashed line�. These
in principle would correspond to tricritical points as in the
case of HDR. The point corresponding to a lower pressure
�higher composition� is a genuine tricritical point while the
other one might be inside I-Nu or I-Nt demixing regions.

C. The Zwanzig model

This simple model, as applied to HR, allows the calcula-
tion of the phase diagram without any parametrization be-
cause the orientational distribution function can be taken as
h	���= ��1+q	� /2�����+ ��1−q	� /2����−� /2� ���x� is the
Dirac delta function�, corresponding to a binary mixture of
two species with perpendicular orientations. Thus, the excess
part of the free energy is a second degree polynomial of the
order parameters q� �with −1�q��1�, and the minimization
of the total free energy requires to solve two transcendental
equations to find their equilibrium values. Since no param-
etrization is necessary, the location of all tricritical points, as
obtained from the minimization, are exactly the same as
those obtained from the bifurcation analysis. This in fact is
the reason why we have chosen to use this model.

Once we calculate the phase diagram we can compare the
results to those obtained using the bifurcation analysis. To
implement the latter we need the following expressions:

a	�
�1� =

x	

2
��	� − 2yx� sinh �	 sinh ��� , �49�

a	�
�2� = a		

�3� = 0, a		
�4� =

x	

12
, �50�

which allows, using the same procedure described above, to
find the packing fraction at the bifurcation point,

�* = �1 + 2�sinh2 ���−1, �51�

and the coefficient B*,

B* =
1

12

�sinh4 ��
sinh4 �1

� 0, �52�

where the constraint of all particle areas being equal to 1 was
imposed and the same change of variables ��	=ln��	� /2�
was used. Finally, to find the demixing behavior of this
model, we need to make the expression

HN
* =

�1 + y*�4

x1
*x2

*�y*�2�1 + a −
3

2
�1 + s3

2�−11 + �as2�2

+ a
�as2 − s1�2

1 + s1
2 �� , �53�

sk =��cosh2k ��
�coshk ��2 − 1, k = 1,2, �54�

s3 =� �sinh4 ��
�sinh2 ��2 − 1, a =

�cosh2 ��
�sinh2 ��

�55�

to vanish. The solutions of this equation for different values
of �2 are shown in Fig. 4. As can be seen the general topol-
ogy is similar to that found for HDR. Comparing both figures
�1 and 4� we can draw as a conclusion that the discretization
of orientations unfavors the I-N demixing.

The phase diagram of a Zwanzig binary mixture of spe-
cies with aspect ratios �	 equal to 9 �	=1� and 2 �	=2� is
shown in Fig. 5 in the pressure-composition plane. The tric-
ritical point �where the I-N1 demixing transition changes
from first to second order as the pressure is reduced� at
x1

*=0.1034 and �P*v1=5.2928 coincides exactly with the
point predicted from the bifurcation analysis �see in Fig. 4
the upper intersection of the curve for �2=2 with a vertical
line located at �=2/9�0.222�.

An important feature of this phase diagram is that the
binodals of the I-N1 or N1-N2 transitions tend to the one-
component asymptotes x1=0 and x1=1 as the pressure is
increased. This trend, characteristic of demixing scenarios
�such as the usual I-I fluid demixing�, should be compared

FIG. 4. Demixing regions �shaded areas� of the Zwanzig model
predicted from HN

* =0. Different curves are the solutions of �53� for
�2=1, 2, 3, 5, and � �the Onsager limit� from outside to inside.

FIG. 5. Phase diagram of the Zwanzig mixture with �1=9 and
�2=2.
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with other possible topologies of phase diagrams �for ex-
ample, those of three-dimensional mixtures of particles of
similar lengths�, where the first-order I-N transition has two
binodals that meet at the one-component limits of the phase
diagram at finite pressure. This criterion is the one we have
used to consider the transitions found here as I-N demixing
transitions instead of the standard I-N orientational transi-
tion.

As can be seen from Fig. 5, at higher pressure from the
tricritical point there is a triple intersection between two first
order transition lines �the I binodal of the I-N1 transition and
the N2 binodal of the N1-N2 transition� and the second order
I-N2 transition line. This point is called in the literature a
critical endpoint. An important remark to make is that this
critical endpoint located at x1

*=0.0144 and �P*v1=16.2775
does not exactly coincide with the predicted result from the
bifurcation analysis. If we look at the lower intersection be-
tween the curve corresponding to �2=2 and the vertical line
located at ��0.222 in Fig. 4, we find the value x1

* which
corresponds to �Pv1=13.8014, which is lower than the
above-mentioned critical endpoint pressure. The reason for
this disagreement can be elucidated if we plot the Gibbs free
energy per particle of the mixture as a function of x1 for three
different values of the pressure, �Pv1=13.8014, which is the
pressure corresponding to the upper tricritical point as ob-
tained from the bifurcation analysis �the open circle in the
inset of Fig. 6�a� corresponds to the bifurcation point�;
�Pv1=16.2775, which corresponds to the triple intersection
�Fig. 6�b�� where the bifurcation and the coexistence points
coalesce; and �Pv1=18.7536, where the two coexistence
points already lie on the nematic branch.

The main conclusion we can draw from this is that the
bifurcation analysis predicts exactly the tricritical point
�which corresponds to the lower pressure or higher x1

* in Fig.
4� and gives an approximate value for the critical endpoint.

In the light of these results we can interpret Fig. 3�a� and
try to predict, as an example, the demixing behavior of a
mixture of freely rotating HR with �2=1 and �1=102. If we
increase the pressure �Pv1�x1

*� following the I-Nu spinodal
curve we find that at a composition defined as the intersec-
tion with the solid line �the tricritical point� the mixture be-
gins to demix into I and Nu phases. The demixing gap be-
comes wider with pressure, and at high pressures the lower
intersection with the dashed line defines the approximate lo-
cation of a critical endpoint where the first order I-Nu and
Nu-Nt transitions coalesce with a second order I-Nt transition.
Increasing further the pressure we should have a Nu-Nt co-
existence and, ultimately, a coexistence between two uniaxial
nematic phases. This latter coexistence could be predicted if
we take into account the phase diagram for the one-
component system, where the Nt phase is sandwiched be-
tween the I and Nu phases �33�.

V. PHASE DIAGRAMS OF HDR MIXTURES

In this section we want to explicitly discuss the demixing
scenarios that may occur in binary mixtures of hard particles.
We will focus our attention on HDR mixtures. For this pur-
pose we have parametrized the orientational distribution
functions of each species as

h	��� =
1

�I0��	�
exp��	 cos 2�� , �56�

where I0�x� is the zeroth-order modified Bessel function.
This parametrization fulfills the normalization constraint

FIG. 6. Gibbs free energy per particle in reduced units �g as a
function of x1 for the Zwanzig mixture with species having �1=9
and �2=2. The values of the pressure are �Pv1=13.8014 �a�,
�Pv1=16.2775 �b�, and �Pv1=18.7536 �c�. The solid and dotted
lines correspond to the I and N branches, respectively. The filled
circles represent the coexistence points. The insets are enlargements
of the neighborhood of the bifurcation points, which are shown by
open circles. Panel �a� shows the loss of convexity of �g in the N
branch at the bifurcation point.
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�0
�d�h	���=1. The free energy per volume �see Sec. II for

its expression� was minimized with respect to �	 �	=1,2�
and the double-tangent construction on the thermodynamic
potential �g�x1� �the Gibbs energy per particle in reduced
units as a function of the composition of the mixture for a
fixed pressure� was used to calculate the coexistence values
of the composition of the mixture and the packing fraction.

The results for a mixture of hard disks ��2=1� and HDR
with �1=10 are shown in Figs. 7�a� and 7�b�. For low pres-
sures there is a continuous I-N transition at a pressure which
agrees with that calculated from the spinodal packing frac-
tion curve �34�. At some composition �x1

*=0.393� we find a
tricritical point from which the mixture begins to demix into
the I phase �rich in discs� and the N phase �rich in rods�. The
location of the tricritical point should be compared with that
resulting from the bifurcation analysis �x1

*=0.434� which
gives the exact result. The difference is due to the parametri-
zation used. As we have already pointed out the value of x1

*

depends on the coefficient B* which in turn depends on the .
These are the expansion coefficients of the free-energy dif-
ference around the bifurcation point up to fourth order. Al-
though the used parametrization captures the right second
order terms, further terms are only approximate due to the
restriction on the minimization variables to be only one per
species.

An interesting result is shown in Fig. 7�b�, a zoom of Fig.
7�a� around the tricritical point. As we can see this part of the

phase diagram exhibits a N1-N2 coexistence which ends in a
critical point, along with the presence of a I-N1-N2 triple
point. As these features are similar to those observed in the
Zwanzig mixture �not shown here�, where no parametriza-
tion was used, we are confident that this scenario is qualita-
tively correct.

Two other phase diagrams are shown in Figs. 8 and 9 for
different mixtures. The topology of the first one is similar to
that found in the Zwanzig mixture, where the I-N1 demixing
is followed by N1-N2 coexistence and the phase diagram in-
cludes one tricritical and one critical endpoint.

The third phase diagram �see Fig. 9� includes an I-N tran-
sition which is always of second order and, at high pressures,
a N1-N2 demixing ending in a critical point. This kind of
phase diagram is typical of mixtures of particles with similar
aspect ratios. Since the pressures at which the demixing tran-
sition occurs are rather high, we expect this transition to be
metastable with respect to phases with partial or full spatial
order. Comparing the phase diagram of Fig. 9 with the exact
bifurcation analysis results �see Fig. 1�, we can conclude
that, even though I-N demixing is already allowed from
��0.595, the parametrization used changes the demixing
behavior of the mixture. An exact free-energy minimization
for the same value of �2 and for ��0.595 should qualita-

FIG. 7. �a�: Phase diagram of the mixture of hard disks �2=1
and HDR with �1=10. �b� A zoom taken around the tricritical point.

FIG. 8. Phase diagram for a HDR mixture with �1=5 and
�2=2.

FIG. 9. Phase diagram for a HDR mixture with �1=4 and
�2=2.
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tively give a phase diagram similar to that shown in Fig. 9.

VI. CONCLUSIONS

While I-I demixing is forbidden in two-dimensional hard-
body additive mixtures of anisotropic particles according to
SPT �25�, we have shown in the present work that the inclu-
sion of ordered phases with orientational symmetry breaking
changes completely the demixing scenario. The phase dia-
grams characteristic of these mixtures can exhibit I-N and
N-N demixing. We have used a bifurcation analysis to dem-
onstrate rigorously that I-N demixing occurs. On the other
hand, explicit calculations of the phase diagrams of HDR,
using an accurate parametrization, have been performed in
order to show the occurrence of N-N demixing. The simple
structure of SPT allowed us to obtain analytically the stabil-
ity criterion for the mixture as a function of packing fraction,
composition and shape of the constituent particles. Thus, us-
ing this procedure, we can predict the I-N demixing sce-
narios for mixtures of HDR and HR.

To show the relative stability of these demixed phases
with respect to nonuniform phases �e.g., solid phases�, we
would need to carry out a full minimization, with respect to
the density profile 
	�r ,�� �which also depends on spatial
variables�, of a density functional constructed in such a way
that it recovers the SPT in the uniform limit. This work is a
task in progress.

Finally, we expect that all the demixing scenarios pre-
dicted here be confirmed by computer simulations of hard-
body mixtures in two dimensions. These simulations are still
lacking.
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